National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Effect of alloying and thermal processing on mechanical properties of tial alloys
Chlupová, Alice ; Heczko, Milan ; Obrtlík, Karel ; Beran, Přemysl ; Kruml, Tomáš
Two -based TiAl alloys with 7 at.% of Nb, alloyed with 2 at.% Mo and 0.5 at.% C, were studied. A heat treatment leading to very fine lamellar microstructure was applied on both alloys. Microstructure after the heat treatment was described and mechanical properties including fatigue behaviour were measured. The as-received material alloyed with C possesses high strength and very limited ductility, especially at RT. After application of selected heat treatment it becomes even more brittle; therefore, this process could be considered as not appropriate for this alloy. On the contrary, in the case of Mo alloyed material, both strength and ductility are improved by the heat treatment at RT and usual working temperature (~750 °C). Presence of the phase is responsible for this effect. The selected heat treatment thus can be an alternative for this alloy to other thermomechanical treatments as high temperature forging.
High Temperature Fatigue Behaviour of Third Generation of TiAl Alloys
Obrtlík, Karel ; Kruml, Tomáš
Low cycle fatigue properties of lamellar TiAl with 7.8 at.% Nb were studied at four temperatures: room temperature, 700, 750 and 800 °C. Up to 750 °C, stable cyclic behaviour is observed while cyclic softening is characteristic for 800°C. The strength of the alloy is still high even at 800 °C. The TEM observation did not reveal any substantial changes in the microstructure due to the cycling at RT. At 750 °C, the lamellar structure was in some places destroyed by cyclic plasticity and pure g-phase islands with high density of dislocation debris were formed. At 800 °C, the domains without lamellar structure cover about 10% of inspected volume and are almost dislocation free. The results show that the diffusion processes leading to vanishing of small prizmatic dislocation loops start to operate between 750 and 800 °C. The destruction of lamellar microstructure and annealing of dislocation debris is the reason for cyclic softening at 800 °C.
Properties of interfaces and plastic deformation in TiAl
Paidar, Václav
Complex plastic deformation of Ti-Al intermetallic alloys composed of lamellar microstructures is interpreted considering not only three forces acting on the carriers of plastic deformation but also the structure of these carries in the crystal lattice.
Properties of interfaces and plastic deformation in TiAl
Paidar, Václav
Complex plastic deformation of TiAl intermetallic alloys composed of lamellar microstructure is interpreted considering not only the forces acting on the carriers of plastic deformation but also the structure of these carriers in the crystal lattice.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.